
   Queueing Models of Call Center 

 

Abstract: Telephone call centers are fundamental parts of numerous organizations, and their 

financial part is critical and developing. They are additionally interesting socio-specialized 

frameworks in which the conduct of clients and representatives is nearly entwined with 

physical execution measures. In these situations customary operational models are of incredible 

esteem – and in the meantime on a very basic level restricted – in their capacity to characterized 

system performance. This is an overview of some scholarly research on telephone call centers. 

The overviewed inquire about has its starting point in, or is identified with, lining hypothesis. 

To be sure, the "queueing-see" of call centers is both regular and helpful. In like manner, 

queueing models have filled in as pervasive standard help instruments for call focus 

administration. Notwithstanding, the advanced call focus is a complex socio-specialized 

framework. It in this manner appreciates focal highlights that test existing lining hypothesis as 

far as possible, and past. 

 

Introduction: Call centers, or their contemporary successors contact centers, are the favored 

and pervasive path for some, organizations to speak with their clients. The call focus industry 

is in this manner tremendous, and quickly extending as far as both workforce and financial 

extension. For instance, it is evaluated that 3.8% of the U.S. what's more, U.K. workforce is 

included with call centers, the call focus industry appreciates a yearly development rate of 23% 

and, in general, the greater part of the business exchanges are directed over the phone. 

There as of now exist a few academic surveys on call centers. (There are various overview 

papers in the business writing, which are not tended to here.) We know about five such articles: 

Pinedo et al. [56], giving nuts and bolts of call focus administration, including some 

investigative models; Anupindi and Smythe [7], which depicts the innovation that empowers 

current and conceivably future call centers; Grossman et al. [36] and Mehrotra [53], which are 

both short reviews of a few OR difficulties in call focus research and hone; lastly Anton [6], 

who gives an administrative overview of the past, present and fate of client get to (contact) 

centers. 

 

 

Call Center  and queuing systems:  A call center is a centralised office which is used for 

receiving a large volume of valuable information by the means of telecommunication. Call 

center can be called as a backbone of a company. This area of study was started almost 100 

year ago by the pioneering work of Danish telephone engineer Agner Krarup Erlang.  An 

inbound call center (deal with incoming call) is operated to administer incoming product 

support from consumers. Outbound call (initiate call to the customers) centers are operated for 

marketing through phone, order taking, financial transaction, market research etc. Call centers 

enables customers to obtain a fast and exact response from the organizations. Call center 

provides a link between the customer and the service provider. According to recent survey call 

center industry is the fastest growing industry in the world. The reason for rapid development 
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of the call center is that both customer and company is profited with the remote service. Due 

to rapid development of the technology, the call centers also have other channels like email, 

fax, instant messaging and so on. Because of this the agents in a call center are more busier and 

the agents have to master many skills. Call center have significant general management 

challenges in human resources, MIS (Multi-user multiple site database) training and quality. 

Due to limited resources and unpredictable demand not all the call can be answered 

immediately.  Information related to the delays is having a special importance in service 

systems with invisible queues, as in call centers. In this systems, the uncertainty involved in 

waiting is higher than that in visible queues, and it does not decrease over time. Customers 

have no means to estimate queue lengths or progress rate. So a feelings of frustration and 

anxiety increase during the waiting. By experiment it has been found that the delay information 

would avoid such these kind of situation . Zakay interpreted that waiting information may 

distract customer’s attention from the passage of time. Hence, they may perceive the length of 

the wait as short.  To overcome this number of model has been proposed by many 

mathematician . Some famous model are :- Erlang Model A , Erlang Model B , Erlang Model 

C , Poisson Model ,Markov Model , Reneging Model and many more are there . A queueing 

system is a stochastic system having a service facility at which a population arrives for service, 

and whenever there are more customer in the system than the service facility can handle 

simultaneously a queue develops. Queueing theory is a branch of applied probability theory 

that studies service system prone to congestion. In queueing system the input is an arriving 

population that enters the system in order to receive the service provided by the company. The 

output is the same population that leaves the system before or after receiving the service. As a 

consequence of a queueing model defines the interacting process and the nature of their 

interaction which determines the characteristics of the general process. 

 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

Models of the system 

Model 1 

Assumption made:-  

 1) There are two types of customers available namely call 1 and call 2.  The two types of calls arrive 

according to a Poisson process with rates 𝜆1and 𝜆2, respectively. There are two queues, Queue 1 and 

Queue 2, which consist of customers of Call 1 and Call 2, respectively. We assume that the calls 

through the call center’s selection system can be accurately classified 

2) An assumption is made that customers may leave the queue due to impatience. The impatience 

time is exponentially distributed with the means 𝜃 

3) There are two categories of servers, Group 1 with N1 servers and Group 2 with N2 servers. Group 

1 is of specialized servers who can only serve customers of Call 1, while Group 2 of flexible servers 

who can serve customers of both Call 1 and Call 2. The service times of servers in Group 1 and 2 are 

all exponentially distributed with means 𝜇1 and 𝜇2respectively.    

 4) The routing policy of the model is based on skills and the importance of the two different types of 

calls. It is assumed that Call 1 is important than Call 2. In other words, Call 1 has non-primitive priority 

that Call 2. When a server in Group 2 completes his (her) service, if there are customers of Call 1 waited 
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in Queue 1 this server will service a customer waited in Queue 1, and if there is no customers of Call 

1 waited in Queue 1 this server will serve a customer waited in Queue 2. When a server in Group 1 

completes his service, if there is a customer waited in Queue 1 he/she will serves a customers of Call 

1, otherwise he/she will be free.  

 5) There are infinite waiting spaces for both queues. For the same type calls, they are served in First-

come First- serviced discipline. These queues are independent of each other. 

Calculation for steady state :- 

There are 7 state sets in the system, let Si,(i=1,2,…,7)denote the specific state set, define S1 is the state 

set that the agents in Group 1 are the idle state (n1<N1), and the agents in Group 2 are the idle state 

(n2<N2) too. S2 is the agents in Group 1 are the idle state (n1<N1), but the agents in Group 2 are the 

just full state (n2=N2). S3 is the agents in Group 1 are the idle state (n1<N1), but the agents in Group 

2 are the busy state (n2>N2). S4 is the agents in Group 1 are the just full state (n1=N1), but the agents 

in Group 2 are the idle state (n2<N2). S5 is the agents in Group 1 are the just full state (n1=N1), and 

the agents in Group 2 are the just full state (n2=N2) too. S6 is the agents in Group 1 are the just full 

state (n1=N1), but the agents in Group 2 are the busy state (n2>N2). S7 is the agents in Group 1 are 

the busy state (n1>N1), and the agents in Group 2 are the busy state (n2>N2) 

(1)The change of states due to arrivals of calls 

Mechanism :-  

For n1≤N1-2, if a call arrives at the system then the set S1 will not be changed. For n1=N1-1, if a call 

arrives at the system then set of states will be changed from set S1to set S4. The trigger of the transfer 

from set S1 to set S4 is due to arrivals of Call 1, and the arrive rate is . Thus, we can obtain the 

transfer rate from set S1 to set S4 

𝑞(𝑠1 − 𝑠4) = lim
∆𝑡→0

𝑃𝑠1,𝑠4
(𝛥𝑡)

𝛥𝑡
 

𝜆1 × 𝑃(𝑛1 = 𝑁1 − 1) 

𝑃(𝑛1 = 𝑁1 − 1) = ,

1
(𝑁1 − 1)!

(
𝜆1
𝜇1

) 𝑁1 − 1

∑
(

𝜆1
𝜇1

)
𝑗

𝑗!
𝑁1
𝑗=0

⁄
 

A similar analysis can also get the rest of the seven state transfer rate caused by call arriving, as 

follows:-  

q(S1-S2) =P(n2=N2-1)𝜆2 ; q(S2-S3) = 𝜆2; 

q(S2-S5) = P(n1=N1-1)𝜆1;q(S3-S6)=P(n1-N1-1) ×  𝜆1;  

（2）The change of states due to leaves of calls:   

Mechanism :-  

One leaves of calls due to the service completed, the state of the agents will from the just full state to 

the idle state. Consider the state-transfer of agents in Group 2 for set S2 . In the set S2 that n2=N2, if a 

call completed the service then set of states will be changed from set S2 to set S1. The trigger of the 
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transfer from set S2 to set S1 is due to service completed of call 2, and the service rate is N2 𝜇2. Thus, 

we can obtain the transfer rate from set S2 to set S1 as follows: 

 

𝑞(𝑠1 − 𝑠4) = lim
∆𝑡→0

𝑃𝑠1,𝑠4
(𝛥𝑡)

𝛥𝑡
 

lim
∆𝑡→0

𝑃(𝑛1 = 𝑁1 − 1 ∩ 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑜𝑓 𝑐𝑎𝑙𝑙𝑙 𝑖𝑛 𝑡𝑖𝑚𝑒 𝐷𝑒𝑙𝑡𝑎 𝑡 𝑎𝑛𝑑 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑏𝑒𝑒𝑛 𝑓𝑖𝑚𝑖𝑠ℎ𝑒𝑑)

𝛥𝑡
 

 

lim
∆𝑡→0

(𝜆1𝛥𝑡 + 𝜎(𝛥𝑡)) × 1𝑃(𝑛1 = 𝑁1 − 1)

𝛥𝑡
 

𝜆1 × 𝑃(𝑛1 = 𝑁1−1) 

One leaves of calls due to the service completed, the state of the agents will from the just full state to 

the idle state. If a call completed the service then set of states will be changed from set S2 to set S1. 

The trigger of the transfer from set S2 to set S1 is due to service completed of call 2, and the service 

rate is N2𝜇2 Thus, we can obtain the transfer rate from set S2 to set S1 as follows: 

q(S2 –  S1 )  =  𝑁2𝜇2 

 

 

Model 2: 

Model Description 

The queueing model of a call center with two classes of customers; valuable customers type A, and 

less valuable ones type B. The model consists of two infinite priority queues type A and B, and a set of 

s parallel, identical servers representing the set of agents. All agents are able to answer all types of 

customers. The call center is operated in such a way that at any time, any call can be addressed by any 

agent. The scheduling policy of service assigns customers A (B) to queue A (B). Customers in queue A 

have priority over customers in queue B in the sense that agents are providing assistance to customers 

belonging to queue A first. The priority rule is non-preemptive, which simply means that an agent 

currently serving a customer pulled from queue B, while a new arrival joins queue A, will complete 

this service before turning to queue A customer. Within each queue, customers are served in FCFS 

manner. Arrival processes of type A and B customers follow a Poisson process with rates λA and λB, 

respectively. Let λT be the total arrival rate, λT = λA +λB. Successive service times are assumed to 

follow a common exponential distribution with rate µ for both types of customers. Then, the server 

utilization ρ (proportion of time each server is busy) is ρ = λT/sµ. The condition for stability is ρ < 1, 

that is to say that the mean total arrival rate must be less than the mean maximal service rate of the 

system. The resulting model, referred to as Model 1, is shown in Figure 1. There are two reasons for 

considering common distributions for service times. The first one relates to the types of call centers 

that motivate our analysis. We are considering call centers where customers are segmented into 

different groups based on their value to the firm. This segmentation can be based on life time value 

or profitability. The call center then provides different levels of service to these groups. This type of 

service level differentiation is widely used in financial service and telecommunication call centres. In 

the presence of this type of segmentation, the difference between customer types is not related to 
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the statistical behaviour of customers but to their importance for the company, which we capture 

through priorities. In concrete terms, we assume for our models that customer queries do not differ 

from one type of customer to another. The second reason is due to the complexity of the analysis 

when assuming different behaviours in the statistical sense.  

Predicting and Announcing Virtual Delays 

When a new arrival call. There are two possibilities: either at least one server is idle, or all servers are 

busy. In the former case, the customer enters service immediately without having to wait. So, the 

service provider does not announce any information to the customer. In the second case, he has to 

wait in queue for service to begin. In the following we give the distribution of the waiting time of a 

new arrival. This analysis will be used by the service provider afterwards, in order to inform customers 

about their delays.  

If the latter is larger than or equal to the number of servers s, then all servers are busy and the new 

arrival has to wait in queue. Let nA be the number of type A customers in queue A seen by the new 

arrival, and nB that of customers B in queue B, nA,nB ≥0. Finally, let nT be the total number of customers 

in queues seen by our new customer,  

nT = nA +nB 

 

Finitely Patient Customers 

The analysis of a call center with a single group of identical agents, serving two classes of impatient 

customers, high and low priority classes. The model is identical to that described above .However in 

addition we allow customers to be impatient. After entering the queue, a customer will wait a random 

length of time for service to begin. If service has not begun by this time he will renege and is considered 

to be lost. Times before reneging for both types are assumed to be exponentially distributed with a 

common rate γ for both customer types. 

Call Center Modeling with Announcement 

Moving from the call center described above to a call center with delay announcement. On the 

contrary to a call center with infinitely patient customers, there is a modeling complexity when we 

provide delay information to customers, due to possible changes in their behavior. In this section, we 

investigate the impact of announcing delays on the customer abandonment experience. When we 

inform a customer about his anticipated delay, he will decide from the beginning, either to hang up 

immediately because he estimates that his delay is too long, or to start waiting in queue. In the latter 

case, there are two further possibilities. The first is that customers never abandon thereafter. The 

second possibility is that the customer patience will change, i.e., customers may abandon even if they 

had chosen to start waiting. It is easy to see that customers would have a patience behavior different 

from that in the original system (without announcement), depending on the information we provide 

to them. We refer the reader to Armony et al. and Guo and Zipkin  for further details on the subject. 

Several forms of delays information are possible. The best is that we give to a new customer his actual 

delay, which cannot be known in advance because it is random. The most natural in practice is that 

the service provider gives a certain percentile β of the virtual delay distribution to each new arrival. 

The virtual delay is the time it takes for a server to become free for the customer of interest. In other 

words, it is the time until all higher priority customers ahead of the arrival leave the queue plus the 

duration of a service completion. Whitt has considered a similar problem for a single class call center. 

He proposed a model incorporating announcement by assuming that a new customer who finds all 
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servers busy balks with a given probability. Once a customer elects to wait in queue, he would never 

abandon thereafter. We assume that each new arrival comes with its own deadline of time patience, 

and paralleling to the model of Whitt we stipulate that a new customer elects to join the queue with 

the probability that a server becomes free for him (his virtual waiting time) before he would renege. 

This is exact only if we assume that the customer acts as if the delay information was his actual delay, 

which is not the case. We do not let customers renege once they join the waiting line. This may be 

reasonable for high values of β, since the estimation of the anticipated delay should be fairly accurate 

in that case, so that ignoring reneging would be valid. Assume that a new arrival finds nA waiting type 

A customers in queue A, and nB waiting type B customers in queue B. Note that implicitly we are 

focusing on new arrivals finding all servers busy. If the number seen by an arrival is less than s, then 

the new arrival never balks and enters service immediately. Let us come back to a new arrival finding 

all servers busy. It should be clear that the probability of balking for a type A new arrival depends only 

on nA (due to the priority rule), say pA bk(nA). However, the probability of balking for a new type B 

arrival depends on the couple (nA,nB), say pB bk(nA,nB). Furthermore, we should not fall in the confusion 

of only considering it as a function of nT = nA+nB. Having different values of nA and nB, so that nT = nA+nB 

is held constant, would affect the virtual delay distribution of the customer of interest. The reason is 

that with delays information, the arrival rate of type A customers, seen by our new type B customer, 

is state of queue A dependent. As a consequence, not considering the couple (nA,nB) to compute the 

balking probability of that customer would lead to a wrong result. 

 

Model 3: 

The basis for proper selection of a mathematical model to describe a specific call-centre in 
practice represents the knowledge of the probability density functions of inter-arrival times 
(for example times between two successive incoming calls) and service times (generally calls 
length). These functions can be procured if accurate and complete data about the call-centre 
operation are available. Since most of modern call centres use modern technology, which 
enables automatic logging of all the events in the call centre, the data needed for the 
mathematical analysis are usually provided. However, the lack of expert knowledge in 
practice prevents the companies from efficient use of them. The field data of the call-centres 
operation will be used to analyse the arrival and service arrangements. On the basis of this 
analysis an appropriate theoretical queueing model will be selected to describe the call centre 
taken into consideration. 
 
A typical queueing model consists of one or more service units (like the servers), arrivals of 
customers demanding the services, and the services process. When all the customers cannot 
be served at once, queues are formed. This brings costs (or losses) due to waiting which 
increase with the number of customers in the queue. To decrease the waiting costs and 
increase the service level guaranteeing better system performance different improvements 
can be followed. However, any kind of improvement often is linked to a certain investment 
leading to higher costs of the queueing system. 
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Figure shows that it is always possible to establish the optimal service level which ensures the 
minimum total costs of the queueing system performance. 
 
 
To determine the optimal service level of a queueing system, different quantitative 
characteristics, like performance measures, can be used. The values of these measures can 
be calculated using an appropriate mathematical model. A suitable selection of the 
mathematical model is based on the following elements of the queueing system: 

•  Arrival process: Population of customers can be considered either limited (closed systems) 
or unlimited (open systems). Most mathematical models assume individual arrivals of 
customers and independent identically distributed inter arrival times. 

•  Service mechanism is determined with the system capacity, availability and probability 
density function of service times. Most mathematical models assume that service times are 
independent identically distributed random variables. 

• Queueing discipline represents the way the queue is organised (First-In-First-Out (FIFO),  
Last-In-First-Out (LIFO), random selection of customers or selection based on customer 
priorities, for examples emergencies first). 
 

Simple queueing models use the standard remark for describing the probability density 
function of inter-arrivals and service times: M – a Poisson process of the number of 
occurrences (i.e. customer arrivals or end of services); and an exponential density function of 
times between two successive events. G – A general distribution of times between two 
successive events (with a known mean and variance; for example, a normal density function). 
D – A deterministic situation; which means times between two successive events are 
constant. Notation M/M/c {infinity/infinity/FIFO} as a result describes the queueing system 
with c parallel serving channels, unlimited population, unlimited queue (no restriction for the 
maximum number of customers allowed to join the queue), and First-In-First-Out queueing 
discipline, meanwhile both of the inter-arrival and the service times are distributed according 
to the exponential density function.  For many types of simple queueing models there exists 
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closed formulations for most system performance measures. Assuming that we have the 
M/M/c {infinity/infinity/FIFO} queueing model the closed form of all four performance. 
 
 
The expected waiting time can be calculated based on the following equation: 

𝐸(𝑊𝑞) =
1

𝑠

(𝑐𝜌)2

𝑐! (1−𝜌)2𝑐𝜇
              [1] 

The expected number of waiting customers can be found according to the expression: 

𝐸(𝑊𝑞) =
1

𝑠

(𝑐𝜌)2𝜌

𝑐! (1−𝜌)2                  [2] 

The probability that one customer is going to wait because all agents are busy can be 
calculated as follows: 

𝑃𝑤𝑎𝑖𝑡 =
1

𝑠

(𝑐𝜌)2

𝑐!  (1−𝜌)
                    [3] 

In the literature, the equation (3) is also known as the Erlang C formula and plays a 
determinant role in the performance of the telephone systems. The service level is the most 
frequent measure of quality of the call centres service. It is determined by a given percentile 
of the waiting time distribution that is given by the following expression: 

𝑆𝐿(𝑡0) = 𝑃[𝑊𝑞  ≤ 𝑡0] = 1 −
1

𝑠

(𝑐𝜌)2

𝑐!  (1−𝜌)
exp (−(1 − 𝜌)𝑐𝜇𝑡0       [4] 

The equation (4) gives the long-term fraction of customers whose waiting time Wq in the 
queue is no larger than a given limit. The symbols used in equations (1), (2), (3) and (4) stand 
for: 
c – number of serving channels 
λ – arrival rate; 1/λ is the expected time between two successive arrivals 
μ – service rate; 1/μ is the expected service time 

 – traffic intensity calculated as  = λ /c μ 
S – the sum which can be calculated by the following expression: 

      𝑆 = 1 + 𝑐𝜌 +
𝑐𝜌2

2!
+ ⋯ +

𝑐𝜌𝑐−1

(𝑐−1)!
+

𝑐𝜌𝑐

𝑐!

1

1−𝜌
             [5] 

Equations (1), (2), (3) and (4) make sense when S  . This condition stands if  1 . The 

condition  1 ensures that the steady state distribution exists. In this case the infinite queues 
are not formed and the queueing system still operates after a long run. The minimum number 
of servers cmin needed to satisfy the regular state condition is the lowest integer that fulfil 
the equation. c > λ / μ 
 

 

Model 4: 

POISSON PROCESS 
  
In probability theory, a Poisson process is a stochastic process which counts the number of 

events and the time that these events occur in a given time interval. The time between each pair 

of consecutive events has an exponential distribution with parameter 𝛌 and each of these inter-

arrival times is assumed to be independent of other inter-arrival times. The process is named 

after the French mathematician Siméon-Denis Poisson and is a good model of radioactive 

decay, telephone calls and requests for a particular document on a web server, among many 

other phenomena.  
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The Poisson process is a continuous-time process; the sum of a Bernoulli process can be 

thought of as its discrete-time counterpart. A Poisson process is a pure-birth process, the 

simplest example of a birth-death process. It is also a point process on the real half-line. 

The basic form of Poisson process, often referred to as the Poisson process, is a continuous-

time counting process {N(t), t ≥ 0} that possesses the following properties: 

 

• N(0) = 0  

 

• Independent increments (the numbers of occurrences counted in disjoint intervals are 

independent of each other)  

• Stationary increments (the probability distribution of the number of occurrences counted in 

any time interval only depends on the length of the interval)  

• No counted occurrences are simultaneous.  

 Consequences of this definition include:  

• The probability distribution of N(t) is a Poisson distribution.  

• The probability distribution of the waiting time until the next occurrence is an exponential 

distribution.  

• The occurrences are distributed uniformly on any interval of time. (Note that N(t), the total 

number of occurrences, has a Poisson distribution over (0, t ], whereas the location of and 

individual occurrence on t ∈ (a, b] is uniform.)  

The homogeneous Poisson process is one of the most well-known Lévy processes. This process 

is characterized by a rate parameter λ, also known as intensity, such that the number of events 

in the time interval (t, t + τ] follows a Poisson distribution with associated parameter λτ. This 

relation is given as 

[5] 
where N(t+τ) - N(t) = k is the number of events in time interval (t, t + τ]. 
 
Just as a Poisson random variable is characterized by its scalar parameter λ, a homogeneous 

Poisson process is characterized by its rate parameter λ, which is the expected number of events 

or arrivals that occur per unit time. N(t) is a sample homogeneous Poisson process, not to be 

confused with a density or distribution function.  

In general, the rate parameter may change over time; such a process is called a non-

homogeneous Poisson process or inhomogeneous Poisson process. In this case, the generalized 

rate function is given as λ(t). Now the expected number of events between time a and time b is 

 

λa, b =  ∫ λ(t)dt 
𝑏

𝑎

 

Thus, the number of arrivals in the time interval (a, b], given as N(b) − N(a), follows a Poisson 

distribution with associated parameter λa,b. 

                         𝑃[(𝑁(𝑏) − 𝑁(𝑎)) = 𝑘] =
𝑒

𝜆(𝑎,𝑏)(𝜆(𝑎,𝑏))𝑘

𝑘!
             [6] 

A homogeneous Poisson process may be viewed as a special case when λ(t) = λ, a constant 

rate.   
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Call focuses can be seen, normally and helpfully, as queuing frameworks. Which is an 

operational plan of a straightforward call focus. In a queuing model of a call focus, the clients 

are guests, servers (assets) are phone specialists (administrators) or correspondence 

hardware, and tele-queues comprise of guests that anticipate benefit by a framework asset. 

The least complex and most-generally utilized such model is the M/M/s queue, additionally 

known in call focus hovers as Erlang C. For most applications, be that as it may, Erlang C is an 

over-disentanglement: for illustration, it accept out occupied signs, clients anxiety and 

administrations traversed over various visits 
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///////////////////////////////////////////////////////////////////////////////////////////////// 

Models 

The multi-server queue M/M/m with impatient customers is called Erlang-A model, “A” 
 
“Abandonment”, in contrast with the well-known Erlang-B model, M/M/m/m, 
 

 Erlang-C model, M/M/m with only patient customers. 

 

Queuing model 

The basic framework of our model is an M/M/K/J queue in the Kendall notation, where K, the number 
of servers, represents the total number of operators working in the centre and J, the maximum 
number of customers accommodated in the system, stands for the number of incoming telephone 
lines. In addition, as often with a queuing model of a call centre, customers in the waiting room may 
depart before getting service (abandonment). A new feature of our model is that each server 
(operator) must spend some amount of time for post-processing work after finishing the service with 
a customer. This corresponds to the after-call work (ACW). The customer leaves the system as soon 
as his service with an operator has finished. However, during the ACW the server cannot give service 
to another customer. Note that this feature make sour model different from the one assuming that 
each customer has effectively a service time consisting of two exponentially distributed phases. Unlike 

usual queuing models, we do not necessarily assume that J ≥ K, because servers may be working on 
ACW while some customers are present in the waiting room. 
 
 
Parameters: 
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Waiting customers are impatient such that they may leave the system before getting service at rate 
_, i.e. the patience time of each waiting customer is exponentially distributed with mean 1/_. If all 
customers are patient, i.e. they never leave the system once accepted until 
Service completion, our model reduces to the one studied by Harris. We assume that the maximum 
number of customers accommodated in the total system is limited to J and the total number of servers 
is assumed to be K. Customers (calls) arrive in a Poisson process with rate _. The service time, i.e. the 
time each customer is processed by a server, is assumed to be exponentially distributed with mean 
1/μ. After completion of service, the customer leaves 
the system, while the server does not become free but starts the ACW of which the duration is 
assumed to be exponentially distributed with mean 1/_. After the completion of ACW, the server 
accepts a new customer, if any, from the waiting room. If there are no customers waiting, the server 
becomes idle. When a customer (call) arrives, if there are already J customers in the system, he is 
blocked and lost immediately and forever (we do not consider retrials of customer call). Otherwise, 
he is accepted 
 
 
 
Transition of system state 
 
 
Let N(t) be the number of customers present in the system, and let A(t) be the number of servers 

working for ACW at time t. Then the two-dimensional process {(N(t),A(t)), t ≥ 0} is a continuous-time 

Markov process with a finite state space 0 ≤ N(t) ≤ J and 0 ≤ A(t) ≤ K. 
We consider the steady-state distribution 
Pjk := lim 
t!1 

P{N(t) = j,A(t) = k} 0 ≤ j ≤ J, 0 ≤ k ≤ K. 

Let us denote by (j, k) the state {N(t) = j,A(t) = k}. In this sate, the number of operators serving 

customers is min{j,K − k}, and the number of waiting customers is j − min{j,K − k} = max{0, j − K + 

k}. The state transition rates to and from state (j, k) are shown in Figure 3. Four kinds of events to 
happen in the system state are the arrival of a new customer, the abandonment of a customer in the 
waiting room, the end of service, and the end of ACW. 
 
 
 
Performance of the model 
 

• Probability that an arriving customer is blocked (blocking probability): Pb, 
 

• Probability that an arriving customer is accepted but waits (probability of wait): PW, 
 

• Mean number of customers present in the waiting room at an arbitrary time: E[L], 
 

• Mean waiting time for both customers who are served and who abandon: E[W], 

 

• Probability that an waiting customer abandons before getting service (probability of 

abandonment): P{Ab}, 

 

• Fraction of time that each operator is either serving a customer or working for ACW (server 
utilization): U, and 
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Formuleas: 
 
 Blocking Probability 
 

 Pb=∑ 𝑷𝒋𝒌𝑲
𝒌=𝟎  

 

            Probability of Wait 

 Pjk =
𝑷𝒋𝒌

𝟏−𝑷𝒃
                0≤ j ≤ J − 1, 0 ≤ k ≤ K. 

 

the probability of wait of an accepted customer is given by 

 

Pw  = ∑ ∑ 𝑃𝑗𝑘
𝐽−1
𝑗=𝐾−𝑘

𝐾
𝑘=0   if   J>=K, 

Pw  = ∑ ∑ 𝑃𝑗𝑘𝐾
𝑘=0

𝑗−1
𝑗=𝐾−𝑘    if  J<K 

 

 
Erlang A model, a queuing model often applied to analyze call center performance. While not a new 
model, Erlang A is becoming a popular alternative to the widely used Erlang C model. In this paper we 
analyze the accuracy of Erlang A predictions in high traffic environments, a situation where the Erlang 
C model is not applicable. Our findings indicate that in this high traffic region the Erlang A model is 
subject to a moderate to high level of error that has a strong pessimistic bias; that is the system tends 
to perform better than predicted. This is in sharp contrast to lower volume scenarios where the model 
tends to be optimistically biased. We find that in addition to utilization, the model is most sensitive to 
arrival rate uncertainty and balking. 
 
 
 
In this section we present a revised model of a call center, relaxing several key assumptions discussed 
previously. In our model calls arrive at a call center according to a Poisson process. Calls are forecasted 

to arrive at an average rate of  ˆ . The realized arrival rate is  , where  is a normally distributed 

random variable with mean  ˆ and standard deviation   . The time required to process a call by an 

average agent is a lognormally distributed random variable with mean 1  − and standard deviation  

 . Arriving calls are routed to the agent who has been idle for the longest time if one is available. If 
all agents are busy the call is place in a FCFS queue. When placed in queue a proportion of callers will 
balk; i.e. immediately hang up. Callers who join the queue have a patience time that follows a Weibull 

distribution with parameters  and . If wait time exceeds their patience time the caller will abandon. 
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Calls are serviced by agents who have variable relative productivity i r . An agent with a relative 
productivity level of 1 serves calls at the 1792 Robbins average rate. An agent with a relative 
productivity level of 1.5 serves calls at 1.5 times the average rate. Agent productivity is assumed to be 

a normally distributed random variable with a mean of 1 and a standard deviation of  r. 
 
 
Our call center model is evaluated using a straightforward discrete event simulation model coded in 
Visual Basic. The purpose of the model is to predict the long term, steady state behavior of the queuing 
system. The model generates random numbers using a combined multiple recursive generator 
(CMRG) based on the Mrg32k3a generator described in (L'Ecuyer 1999). Common random numbers 
are used across design points to reduce output variance. To reduce any start up bias we use a warm 
up period of 5,000 calls, after which all statistics are reset. The model is then run for an evaluation 
period of 25,000 calls and summary statistics are collected. For each design point we repeat this 
process for 500 replications and report the average value across replications. 
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